Generating Coherent Patterns of Activity from Chaotic Neural Networks
نویسندگان
چکیده
Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on premovement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated.
منابع مشابه
بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملAnalysis of chaotic wandering of phase patterns in a two-dimensional coupled chaotic circuits network
Studies on spatio-temporal phenomena observed from coupled chaotic networks, namely coupled systems of many chaotic cells, are classified into two categories; namely discrete time systems and continuous time systems. For discrete time systems Kaneko’s coupled map lattice is the most interesting and well-studied system [l]. He discovered various nonlinear spatiotemporal chaotic phenomena such as...
متن کاملCoherence and clustering in ensembles of neural networks
Large ensembles of globally coupled chaotic neural networks undergo a transition to complete synchronization for high coupling intensities. The onset of this fully coherent behavior is preceded by a regime where clusters of networks with identical activity are spontaneously formed. In these regimes of coherent collective evolution the dynamics of each neural network is still chaotic. These resu...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 63 شماره
صفحات -
تاریخ انتشار 2009